53 research outputs found

    Integrated optics for astronomical interferometry. I. Concept and astronomical applications

    Full text link
    We propose a new instrumental concept for long-baseline optical single-mode interferometry using integrated optics which were developed for telecommunication. Visible and infrared multi-aperture interferometry requires many optical functions (spatial filtering, beam combination, photometric calibration, polarization control) to detect astronomical signals at very high angular resolution. Since the 80's, integrated optics on planar substrate have become available for telecommunication applications with multiple optical functions like power dividing, coupling, multiplexing, etc. We present the concept of an optical / infrared interferometric instrument based on this new technology. The main advantage is to provide an interferometric combination unit on a single optical chip. Integrated optics are compact, provide stability, low sensitivity to external constrains like temperature, pressure or mechanical stresses, no optical alignment except for coupling, simplicity and intrinsic polarization control. The integrated optics devices are inexpensive compared to devices that have the same functionalities in bulk optics. We think integrated optics will fundamentally change single-mode interferometry. Integrated optics devices are in particular well-suited for interferometric combination of numerous beams to achieve aperture synthesis imaging or for space-based interferometers where stability and a minimum of optical alignments are wished.Comment: 11 pages, 8 figures, accpeted by Astronomy and Astrophysics Supplement Serie

    The interferometric baselines and GRAVITY astrometric error budget

    Full text link
    GRAVITY is a new generation beam combination instrument for the VLTI. Its goal is to achieve microarsecond astrometric accuracy between objects separated by a few arcsec. This 10610^6 accuracy on astrometric measurements is the most important challenge of the instrument, and careful error budget have been paramount during the technical design of the instrument. In this poster, we will focus on baselines induced errors, which is part of a larger error budget.Comment: SPIE Meeting 2014 -- Montrea

    High spatial resolution monitoring of the activity of BA supergiant winds

    Get PDF
    There are currently two optical interferometry recombiners that can provide spectral resolutions better than 10000, AMBER/VLTI operating in the H-K bands, and VEGA/CHARA, recently commissioned, operating in the visible. These instruments are well suited to study the wind activity of the brightest AB supergiants in our vicinity, in lines such as Hα\alpha or BrGamma. We present here the first observations of this kind, performed on Rigel (B8Ia) and Deneb (A2Ia). Rigel was monitored by AMBER in two campaigns, in 2006-2007 and 2009-2010, and observed in 2009 by VEGA; whereas Deneb was monitored in 2008-2009 by VEGA. The extension of the Halpha and BrGamma line forming regions were accurately measured and compared with CMFGEN models of both stars. Moreover, clear signs of activity were observed in the differential visibility and phases. These pioneer observations are still limited, but show the path for a better understanding of the spatial structure and temporal evolution of localized ejections using optical interferometry.Comment: Proceedings of conf. IAUS272 - Active OB stars - Paris, July 19-23, 201

    Characterization of integrated optics components for the second generation of VLTI instruments

    Full text link
    Two of the three instruments proposed to ESO for the second generation instrumentation of the VLTI would use integrated optics for beam combination. Several design are studied, including co-axial and multi-axial recombination. An extensive quantity of combiners are therefore under test in our laboratories. We will present the various components, and the method used to validate and compare the different combiners. Finally, we will discuss the performances and their implication for both VSI and Gravity VLTI instruments.Comment: SPIE Astronomical Instrumentation 2008 in Marseille, France -- Equation (7) update

    Integrated optics for astronomical interferometry - VI. Coupling the light of the VLTI in K band

    Get PDF
    Our objective is to prove that integrated optics (IO) is not only a good concept for astronomical interferometry but also a working technique with high performance. We used the commissioning data obtained with the dedicated K-band integrated optics two-telescope beam combiner which now replaces the fiber coupler MONA in the VLTI/VINCI instrument. We characterize the behaviour of this IO device and compare its properties to other single mode beam combiner like the previously used MONA fiber coupler. The IO combiner provides a high optical throughput, a contrast of 89% with a night-to-night stability of a few percent. Even if a dispersive phase is present, we show that it does not bias the measured Fourier visibility estimate. An upper limit of 0.005 for the cross-talk between linear polarization states has been measured. We take advantage of the intrinsic contrast stability to test a new astronomical prodecure for calibrating diameters of simple stars by simultaneously fitting the instrumental contrast and the apparent stellar diameters. This method reaches an accuracy with diameter errors of the order of previous ones but without the need of an already known calibrator. These results are an important step of integrated optics and paves the road to incoming imaging interferometer projects

    Characterizing closure-phase measurements at IOTA

    Get PDF
    We are working towards imaging the surfaces and circumstellar envelopes of Mira stars in the near-infrared, using the IOTA interferometer and the IONIC integrated-optics 3-beam combiner. In order to study atmospheric structures of these stars, we installed 3 narrow-band filters that subdivide H-band into 3 roughly equal-width sub-bands - a central one for continuum, and 2 adjacent ones to sample Mira star's (mostly water) absorption-bands. We present here our characterization of the IOTA 3-Telescope interferometer for closure-phase measurements with broad and narrow-band filters in the H atmospheric window. This includes characterizing the stability, chromaticity, and polarization effects of the present IOTA optics with the IONIC beam-combiner, and characterizing the accuracy of our closure phase measurements

    The fiber coupler and beam stabilization system of the GRAVITY interferometer

    Full text link
    We present the installed and fully operational beam stabilization and fiber injection subsystem feeding the 2nd generation VLTI instrument GRAVITY. The interferometer GRAVITY requires an unprecedented stability of the VLTI optical train to achieve micro-arcsecond astrometry. For this purpose, GRAVITY contains four fiber coupler units, one per telescope. Each unit is equipped with actuators to stabilize the telescope beam in terms of tilt and lateral pupil displacement, to rotate the field, to adjust the polarization and to compensate atmospheric piston. A special roof-prism offers the possibility of on-axis as well as off-axis fringe tracking without changing the optical train. We describe the assembly, integration and alignment and the resulting optical quality and performance of the individual units. Finally, we present the closed-loop performance of the tip-tilt and pupil tracking achieved with the final systems in the lab.Comment: 14 pages, 13 figures. Proceedings of the SPIE 9146 "Optical and Infrared Interferometry IV

    Characterizing closure-phase measurements at IOTA

    Get PDF
    We are working towards imaging the surfaces and circumstellar envelopes of Mira stars in the near-infrared, using the IOTA interferometer and the IONIC integrated-optics 3-beam combiner. In order to study atmospheric structures of these stars, we installed 3 narrow-band filters that subdivide H-band into 3 roughly equal-width sub-bands - a central one for continuum, and 2 adjacent ones to sample Mira star's (mostly water) absorption-bands. We present here our characterization of the IOTA 3-Telescope interferometer for closure-phase measurements with broad and narrow-band filters in the H atmospheric window. This includes characterizing the stability, chromaticity, and polarization effects of the present IOTA optics with the IONIC beam-combiner, and characterizing the accuracy of our closure phase measurements
    corecore